Type: \(\displaystyle 2A^{1}_1\) (Dynkin type computed to be: \(\displaystyle 2A^{1}_1\))
Simple basis: 2 vectors: (1, 1, 1, 1, 1), (0, 1, 1, 1, 0)
Simple basis epsilon form:
Simple basis epsilon form with respect to k:
Number of outer autos with trivial action on orthogonal complement and extending to autos of ambient algebra: 0
Number of outer autos with trivial action on orthogonal complement: 0.
C(k_{ss})_{ss}: A^{1}_1
simple basis centralizer: 1 vectors: (0, 0, 1, 0, 0)
Number of k-submodules of g: 17
Module decomposition, fundamental coords over k: \(\displaystyle V_{2\omega_{2}}+2V_{\omega_{1}+\omega_{2}}+V_{2\omega_{1}}+4V_{\omega_{2}}+4V_{\omega_{1}}+5V_{0}\)
g/k k-submodules
idsizeb\cap k-lowest weightb\cap k-highest weightModule basisWeights epsilon coords
Module 11(0, 0, -1, 0, 0)(0, 0, -1, 0, 0)g_{-3}-\varepsilon_{3}+\varepsilon_{4}
Module 22(0, 0, -1, -1, 0)(0, 1, 0, 0, 0)g_{2}
g_{-8}
\varepsilon_{2}-\varepsilon_{3}
-\varepsilon_{3}+\varepsilon_{5}
Module 31(0, 0, 1, 0, 0)(0, 0, 1, 0, 0)g_{3}\varepsilon_{3}-\varepsilon_{4}
Module 42(0, -1, -1, 0, 0)(0, 0, 0, 1, 0)g_{4}
g_{-7}
\varepsilon_{4}-\varepsilon_{5}
-\varepsilon_{2}+\varepsilon_{4}
Module 52(0, 0, -1, -1, -1)(1, 1, 0, 0, 0)g_{6}
g_{-12}
\varepsilon_{1}-\varepsilon_{3}
-\varepsilon_{3}+\varepsilon_{6}
Module 62(0, 0, 0, -1, 0)(0, 1, 1, 0, 0)g_{7}
g_{-4}
\varepsilon_{2}-\varepsilon_{4}
-\varepsilon_{4}+\varepsilon_{5}
Module 72(0, -1, 0, 0, 0)(0, 0, 1, 1, 0)g_{8}
g_{-2}
\varepsilon_{3}-\varepsilon_{5}
-\varepsilon_{2}+\varepsilon_{3}
Module 82(-1, -1, -1, 0, 0)(0, 0, 0, 1, 1)g_{9}
g_{-10}
\varepsilon_{4}-\varepsilon_{6}
-\varepsilon_{1}+\varepsilon_{4}
Module 92(0, 0, 0, -1, -1)(1, 1, 1, 0, 0)g_{10}
g_{-9}
\varepsilon_{1}-\varepsilon_{4}
-\varepsilon_{4}+\varepsilon_{6}
Module 103(0, -1, -1, -1, 0)(0, 1, 1, 1, 0)g_{11}
h_{4}+h_{3}+h_{2}
g_{-11}
\varepsilon_{2}-\varepsilon_{5}
0
-\varepsilon_{2}+\varepsilon_{5}
Module 112(-1, -1, 0, 0, 0)(0, 0, 1, 1, 1)g_{12}
g_{-6}
\varepsilon_{3}-\varepsilon_{6}
-\varepsilon_{1}+\varepsilon_{3}
Module 124(0, -1, -1, -1, -1)(1, 1, 1, 1, 0)g_{13}
g_{-5}
g_{1}
g_{-14}
\varepsilon_{1}-\varepsilon_{5}
-\varepsilon_{5}+\varepsilon_{6}
\varepsilon_{1}-\varepsilon_{2}
-\varepsilon_{2}+\varepsilon_{6}
Module 134(-1, -1, -1, -1, 0)(0, 1, 1, 1, 1)g_{14}
g_{-1}
g_{5}
g_{-13}
\varepsilon_{2}-\varepsilon_{6}
-\varepsilon_{1}+\varepsilon_{2}
\varepsilon_{5}-\varepsilon_{6}
-\varepsilon_{1}+\varepsilon_{5}
Module 143(-1, -1, -1, -1, -1)(1, 1, 1, 1, 1)g_{15}
h_{5}+h_{4}+h_{3}+h_{2}+h_{1}
g_{-15}
\varepsilon_{1}-\varepsilon_{6}
0
-\varepsilon_{1}+\varepsilon_{6}
Module 151(0, 0, 0, 0, 0)(0, 0, 0, 0, 0)h_{3}0
Module 161(0, 0, 0, 0, 0)(0, 0, 0, 0, 0)h_{4}-h_{2}0
Module 171(0, 0, 0, 0, 0)(0, 0, 0, 0, 0)h_{5}-h_{1}0

Information about the subalgebra generation algorithm.
Heirs rejected due to having symmetric Cartan type outside of list dictated by parabolic heirs: 12
Heirs rejected due to not being maximally dominant: 1
Heirs rejected due to not being maximal with respect to small Dynkin diagram automorphism that extends to ambient automorphism: 1
Heirs rejected due to having ambient Lie algebra decomposition iso to an already found subalgebra: 0
Parabolically induced by A^{1}_1
Potential Dynkin type extensions: 3A^{1}_1,